Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel.

نویسندگان

  • K P Campbell
  • C M Knudson
  • T Imagawa
  • A T Leung
  • J L Sutko
  • S D Kahl
  • C R Raab
  • L Madson
چکیده

The high affinity ryanodine receptor of the Ca2+ release channel from junctional sarcoplasmic reticulum of rabbit skeletal muscle has been identified and characterized using monoclonal antibodies. Anti-ryanodine receptor monoclonal antibody XA7 specifically immunoprecipitated [3H]ryanodine-labeled receptor from digitonin-solubilized triads in a dose-dependent manner. [3H]Ryanodine binding to the immunoprecipitated receptor from unlabeled digitonin-solubilized triads was specific, Ca2+-dependent, stimulated by millimolar ATP, and inhibited by micromolar ruthenium red. Indirect immunoperoxidase staining of nitrocellulose blots of various skeletal muscle membrane fractions has demonstrated that anti-ryanodine receptor monoclonal antibody XA7 recognizes a high molecular weight protein (approximately 350,000 Da) which is enriched in isolated triads but absent from light sarcoplasmic reticulum vesicles and transverse tubular membrane vesicles. Thus, our results demonstrate that monoclonal antibodies to the approximately 350,000-Da junctional sarcoplasmic reticulum protein immunoprecipitated the ryanodine receptor with properties identical to those expected for the ryanodine receptor of the Ca2+ release channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended junctional sarcoplasmic reticulum of avian cardiac muscle contains functional ryanodine receptors.

The ryanodine receptor (RYR)/Ca2+ release channel of avian cardiac muscle was localized by immunocytochemical techniques and biochemically characterized using isolated membrane and receptor protein fractions. Monoclonal antibody C3-33 raised against the canine cardiac RYR bound to the junctional sarcoplasmic reticulum of pigeon and finch hearts, both at peripheral couplings and at extended junc...

متن کامل

Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel.

The Ca2+ release channel and ryanodine receptor are activities copurifying with the 400,000-450,000 Da high molecular weight protein of cardiac and skeletal junctional sarcoplasmic reticulum. Calpain II, an endogenous cytosolic protease, was used to selectively degrade the high molecular weight protein in cardiac and skeletal muscle sarcoplasmic reticulum vesicles, and its effects on the activi...

متن کامل

Triadin, a linker for calsequestrin and the ryanodine receptor.

Protein components of the triad junction play essential roles in muscle excitationcontraction coupling (EC coupling). Considerable research has been performed on the identification and characterization of proteins that regulate calcium storage and release from the sarcoplasmic reticulum (McPherson and Campbell, 1993; FranziniArmstrong and Jorgensen, 1994). Key proteins characterized include the...

متن کامل

Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel.

The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg an...

متن کامل

Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.

Triadin is a major membrane protein that is specifically localized in the junctional sarcoplasmic reticulum of skeletal muscle and is thought to play an important role in muscle excitation-contraction coupling. In order to identify the proteins in the skeletal muscle that interact with triadin, the cytoplasmic and luminal domains of triadin were expressed as glutathione S-transferase fusion pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 14  شماره 

صفحات  -

تاریخ انتشار 1987